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Abstract 
 

This thesis investigates the use of collaboration between sensor nodes that were 

tasked with localizing a radio frequency emitter. Localization is a necessary component for 

dynamic spectrum access. Using a set of software-defined radios as our sensors and a 

received signal strength-based maximum likelihood localization algorithm, we successfully 

localized transmitting nodes based on their received signal strength. Our experiment was 

conducted outdoors using a flexible topology that could be shaped into 21 sub-topologies 

that varied in size, and orientation with respect to the transmitters. This was made possible 

through application of a time shift concept and a post-processing technique. We were able to 

compare our real world results with the simulated results of the same topologies. Although 

our simulation results did not fully comply with our real world results, we observed some 

common trends regarding effective topology design. 
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IMPLEMENTATION OF COLLABORATIVE RF LOCALIZATION 
USING A SOFTWARE-DEFINED RADIO NETWORK 

I. Introduction 

 

1.1 Motivation 

Although there used to be a general perception that the radio spectrum in the United 

States was becoming over-crowded, we now know that this perception was actually due to a 

spectrum access problem [1]. The Federal Communication Commission’s (FCC) traditional 

approach to spectrum allocation worked well for a time when radio technologies were 

simpler. But compartmentalized spectrum assignment, which was once the solution, has now 

become a serious issue as the demand for available spectrum increases among an ever-

growing number of users [2], [3], [4], [5]. 

Practical access of the unused spectra (also called whitespace), whose availability 

shifts dynamically in space and time, requires an adaptive solution. In the last decade, a bold 

solution was proposed – an autonomous agent that proactively makes decisions to assist a 

user – in order to make spectrum access and other communication-based tasks feasible 

despite dynamic and constrained operating environments. The cognitive radio (CR), as 

introduced by Mitola and Maguire [6], is centered entirely on a sole user, acting as a personal 

assistant that delivers end-user services through its ability to observe, adapt, and learn. 

Dynamic spectrum access, however, is not a problem best solved through individual 

effort. A CR’s estimation of its current radio frequency (RF) environment has been shown to 

become significantly more accurate when performed in cooperation with other CRs [7], [8]. 

A network of collaborating cognitive radios (a cognitive network) benefits from a shared 

representation of its RF environment by creating a more complete depiction of its dynamic 
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surroundings. An essential part of this RF topography process identifies the presence of 

primary users, their spatial locations, and their antenna patterns, among other characteristics. 

In this way, primary users may continue to operate unimpeded, and the collaborating CRs 

(secondary users) can still productively share the limited medium. 

1.2 Background 

Previous research has examined the process of characterizing the RF environment by 

mapping spectrum usage in space, time, frequency, and code. The 5.1 dimensional RF 

topography developed by Martin and Thomas [9] uses simulation results to demonstrate 

their localization algorithm which identifies the presence, positions, and antenna patterns of 

primary users within a search space populated by CR nodes cooperating in a noisy 

environment. Using the received signal strength (RSS) obtained at each receiving sensor and 

known receiver positions, they have demonstrated how their algorithm can be used to 

improve decisions on spectrum availability in a dynamic spectrum access system. 

1.3 Research Objectives 

The objectives of this research are: to investigate whether Martin’s proposed source 

localization algorithm [9] can be implemented in a real-time environment using a flexible 

hardware testbed, to examine the accuracy of source position estimates using the algorithm 

through hardware experimentation, and to compare the results obtained in real-world 

experiments against those achieved through simulation. Above all, this research sought to 

demonstrate that collaborative localization among cognitive radios enables network-wide 

dynamic spectrum access by helping to form a shared representation of the RF environment. 

1.4 Research Scope 
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Our experiments were conducted using receivers and transmitters operating within 

the FM band (88 MHz to 108 MHz). The transmitting and receiving nodes were configured 

with omnidirectional monopole antennas. None of the nodes were mobile. The RF 

localization performed in our study was entirely RSSI-based; it did not incorporate any other 

localization approaches such as time-difference of arrival (TDOA) and angle of arrival 

(AOA). We limited our position estimation to two dimensions. Also, we chose to focus on 

the data collection process and not on the protocols that govern data exchange. 

1.5 Assumptions and Limitations 

Some assumptions were made and a few limitations were met in order to reach a 

purposeful end to this research. For example, all of the sensing nodes were assumed to be 

cooperating with trustworthy peers. Also, it was assumed that the nodes were able to 

exchange their information over a low-bandwidth, reliable channel that was set up 

beforehand. Although the simulations performed by Martin and Thomas included many 

randomly distributed sensing nodes, hardware costs limited our experiments to only a few 

sensing nodes and even fewer transmitting nodes. 

1.6 Thesis Document Organization 

The remaining sections of this document are arranged in the following order. 

Chapter 2 provides background information on the systems, ideas, and techniques used to 

perform our experiment. It also discusses the research of others in the field and how they 

contributed to this formal study. Chapter 3 details the sensor characterization process we 

used to ensure a homogeneous network and discusses the design of our experiment. Chapter 

4 presents our performance criteria, our results, and provides a comparison between 

experimental results and simulation results. Chapter 5 summarizes our findings and lays a 
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foundation for future work. The appendices are reserved for expanding on ideas that were 

briefly mentioned in the chapters, and several resources for any individual pursuing a similar 

line of research. 
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II. Background 

2.1 Introduction 

 The purpose of this chapter is to provide background information about concepts 

directly related to our research and to discuss the efforts of others. Much of our research is 

described by the following subject areas: cognitive radio, cognitive networks, node 

localization, wireless sensor networks, and multisensor data fusion. In Section 2.2 we give a 

history of the cognitive radio and cognitive network by first exploring the software-defined 

radio. Section 2.3 provides a comparison of several wireless node localization techniques that 

are commonly used. As a core discipline of multi-agent collaboration, we define the 

components of a generalized wireless sensor network in Section 2.4. In Section 2.5 we 

expand this definition with a survey of the most relevant data fusion models and 

architectures. Each section provides a summary of research efforts within the field.   

2.2 Cognitive Radio and Cognitive Networks 

The beginnings of the cognitive radio concept are rooted in the areas of radio 

communications and artificial intelligence. These concepts formed the foundations of a 

cognitive network. In this section we present the ideas and events which led to the creation 

of both cognitive systems, and explain some of the ongoing research being done to mature 

these technologies. 

The early 20th century work of Marconi gave the world a new way to communicate 

using what was then called a “wireless telegraph.” For more than a century, radio technology 

has matured into an indispensible tool that permeates all areas of our lives. The radio that 

once brought True Detective Mysteries to numerous listeners on Sunday afternoons, and 

President Roosevelt’s famous Fireside Chats (among others) has grown into a nearly trillion 
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dollar business whose effects are seen in diverse areas from public safety, to personal 

communication, and everything in between [10], [11]. 

It was not until the mid-1980s that digital communications began to shape radio 

technology by combining hardware with the flexibility of software. One of the first major 

breakthroughs was the military software radio, SpeakEasy [12]. Developed at Rome Air 

Force Base, New York, it was intended to be a multiband, multimode, interoperable solution 

to the proliferation of incompatible radio units – a logistical nightmare. The military software 

radio was designed in response to the Department of Defense’s long-standing question: 

‘How can the military ensure communication with its latest allies and global support 

structure, deny interception by [its] current enemies, take advantage of the rapid technology 

changes, and control the costs of military spending?’ [12] The modularity, open architecture 

design, and upgradeability of the SpeakEasy system helped to pave the way for commercial 

development of what would be known as software-defined radio – a term coined by Mitola 

in his 1992 paper [13]. 

The software-defined radio (SDR) evolved from its military communications roots 

into a more accessible tool for commercial applications such as cellular infrastructure 

systems [14], [15]. This evolution was made in part by Wayne Bosner, of the Air Force 

Research Laboratories (AFRL) who founded the SDR Forum. Working in conjunction with 

the Institute of Electrical and Electronic Engineers (IEEE) P1900.1 group, they set out to 

develop hardware and software standards that would help ensure interoperability among all 

SDRs developed in industry, worldwide [16], [17]. Their pursuits brought together the 

software architecture, microprocessor, spectrum policy, and digital signal processing fields. 

Then, in 1999 Mitola and Maguire formally introduced the cognitive radio (CR) [6] 

where they defined what would be an extension of the SDR that would use its awareness of 
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internal and external influences in order smartly interact with the RF environment. The 

digital communications and artificial intelligence communities took an interest because much 

of the existing technology could be used to implement one almost immediately. Finding an 

expanded use for the CR concept, Thomas proposed a more collaborative agenda [18] in 

which networked devices would use their situation awareness to fulfill larger, network-wide 

objectives and thus realize the concept of an adaptive data network. Introduced as the 

Cognitive Network (CN), focus was shifted away from the individual device (or user) 

towards broader end-to-end decisions and goals. 

2.3 Node Localization Techniques 

 Node localization is the process of determining position information for various 

wireless nodes in a network. Radio Frequency (RF) localization techniques are those 

methods that use signal measurements and signal processing to calculate position 

information for wireless nodes. The various RF localization techniques that exist today are 

unique according to their signal-measurement focus. For example, one approach measures 

the strength of a received signal in terms of a voltage or power. Other approaches use signal 

propagation time. Another uses incidence angles of received signals as they enter an array of 

antennas. Each of these major approaches has its own strengths and weaknesses which we 

compare below. 

2.3.1 Received Signal Strength Indicated 

Received Signal Strength Indicated (RSSI) is a measure of how strong a signal is 

when it arrives at a sensor. The Received Signal Strength (RSS, henceforth RSSI) is 

commonly taken as a voltage measurement, or equivalently calculated as a signal power (e.g. 

the magnitude squared). Measurements can be made from acoustic, RF or other types of 
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signals without infringing on bandwidth or requiring complex hardware. However, RSS 

measurements, are known to vary unpredictably usually because of operating environment 

conditions [19]. The most influential sources of error are due to multipath propagation and 

shadowing. Multipath is a phenomenon that destructively (or constructively) combines 

signals of differing amplitude and phase orientations that have traversed multiple paths prior 

to arriving at the receiver. Shadowing is the attenuation that results when a signal is forced to 

go through or bend around obstacles such as walls or trees. Despite these hazards, the 

relative simplicity and low cost of RSSI-based techniques make them attractive solutions for 

localization tasks. 

When RSSI values are taken using a range-aware approach, an effective propagation 

loss can be calculated at the receiving node given a known transmission power. Theoretical 

and empirical models can be applied to convert the propagation loss into a radial distance 

estimate [20]. However, when taken using a range-free approach, which makes no assumption 

about distance information, environmental effects can be significantly reduced as more 

sensing nodes are allowed to participate in the estimation process. In general, range-free 

approaches require anchor nodes – nodes that "know" their own position – that support 

regular (position-unaware) nodes in order to remotely sense a signal emitter. 

2.3.2 Time of Arrival 

Time of Arrival (TOA) is the measured time at which a known signal first arrives at a 

receiver. This measurement includes the time of transmission (the time it takes an RF source 

to "put" a signal into the environment) and the propagation delay (the time it takes the signal 

to move from a source antenna to a receiver antenna). The TOA is determined by 

calculating the cross-correlation between the received signals and the known transmitted 

signal. The location of the largest cross-correlation peak indicates when the line-of-sight 
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(LOS) signal arrived, and yields a time delay when taken with respect to a reference time. 

The location and height of the peak are greatly influenced by additive noise, which degrades 

the peak; and by self-interference from multipath signals, which obscures the peak of the 

LOS signal [19]. The separation distance between the transmitter and receiver is estimated by 

multiplying the time delay by a known propagation speed such as the speed of light or the 

speed of sound. Since TOA approaches are based on accurate timing, they generally require 

more sophisticated hardware and an absolute time reference. 

2.3.3 Time Difference of Arrival 

Time Difference of Arrival (TDOA) techniques, on the other hand, are relatively 

immune to timing errors because they calculate a signal's time delay by using the difference in 

arrival times of the same known signal received by two antennas. Thus, any internal clock 

bias experienced by either sensor is eliminated because the difference calculation ignores an 

absolute time reference [19]. This gives way for a less-costly asynchronous localization 

approach because specialized timing devices are unnecessary. Unlike the TOA method, 

which uses the time delay and propagation speed to calculate a distance, TDOA 

measurements define (or are solutions to) hyperbolas that lie between the transmitting node 

and the receiving node. When another TDOA measurement is performed by a different pair 

of sensing nodes, an additional hyperbola is created. The point at which the two hyperbolas 

intersect indicates the position estimate [20]. Position estimates using TDOA have been 

shown to yield better performance than TOA methods particularly in multipath 

environments [21]. 
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2.3.4 Angle of Arrival 

Rather than providing distance information, Angle of Arrival (AOA) measurements 

identify the direction of origin for a signal of interest. Using a specifically designed antenna 

array placed on a sensing node, TOA measurements and signal processing techniques are 

applied to calculate an arrival angle with respect to the sensor's orientation. Unlike the 

TDOA approach, direction estimate accuracy is dependent on a clear LOS path between the 

transmitter and receiver antennas [21]. Angle information can also be used to perform 

position estimates by calculating the point of intersection between two lines, drawn from 

two directional antennas, occurring at angles with respect to some reference orientation [22]. 

However, using angle information alone to determine position is not a common practice for 

RF localization. Instead, AOA measurements are used to supplement other localization 

techniques.   

2.4 Wireless Sensor Networks 

Wireless sensor networks (WSNs) are self-organizing, ad hoc networks made up of a 

large number of nodes that measure things. As such, nodes are typically designed to be low-

cost, low-power, and capable of communicating over short distances. The general premise is 

to be able to observe phenomena by deliberately placing (or scattering) a group of 

collaborating nodes onto an area of interest and to have them transmit the sensed data 

wherever it is needed. Being wireless, it reduces installation costs; and being ad hoc, nodes 

may be removed or added just as easily.  Applications for wireless sensor networks span 

many disciplines including the military [23], [24]; the environment [25],[26]; human health 

[27]; and commercial industry [28]. For example, an array of nodes can be distributed in an 

office building to measure temperature and human traffic in order to smartly conserve 
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energy used for heating and lighting, which account for more than 50% of electricity 

consumed by office environments [29]. A related case study is given in [30]. 

As depicted in Figure 1, a sensor node is composed of four basic components: a 

sensing unit, a processing unit, a transceiver unit, and a power unit [31]. The sensing unit's 

sensor collects observed phenomena (temperature, humidity, pressure, etc.) as analog signals, 

and the analog to digital converter (ADC) digitizes the signals so that they can be processed. 

The transceiver links a sensing node to the other nodes in its immediate area so that data can 

be exchanged over the multi-hop network. Routing and collaboration decisions are 

calculated in the processing unit. The most important component, however, is the power 

unit. It governs all of the sensor's processes and is most often the leading hardware 

constraint. 

Power Unit
Power 

Generator

Transceiver
Processor

Storage
Sensor ADC

MobilizerLocation Finding 
System

Processing UnitSensing Unit

 
Figure 1:  Components of a sensor node [31] 

Figure 1:  Components of a sensor node 

When being used for more specialized applications, sensor nodes can be made to 

include several other components (dotted outline in Figure 1). Miniature solar cells, vibration 

energy harvesters or other energy scavenging methods help reduce the power constraint and 

extend sensor persistence. Mobilizers allow a sensor to physically relocate itself (usually by 

crawling, rolling, or bounding). A location finding system enables a sensor to calculate its 
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position relative to other sensors, and when used cooperatively, can help localize the source 

of phenomena (such as the position of a nearby moving tank). 

The key to a WSN's success is a robust communication foundation. Depending on 

the sensing task, nodes may need to use protocols that combine power and routing 

awareness so that the least amount of power and bandwidth are used regardless of the 

amount of data that needs to be relayed [31]. Proactive [32] and reactive [33] routing 

algorithms can be applied to suit the type of sensor network so that the nodes can still 

cooperate effectively despite transient link states within a multi-hop network environment. 

  There are times when an end-user will need to retrieve more specific data from 

particular sections of a WSN or from several independent WSNs. Keeping this in mind, the 

authors of [34] address the importance of sharing sensor-derived data with external users. 

They propose a sensor network registry architecture whose usefulness they liken to a good 

web search engine that presents the most relevant results to a user query. When searching 

for a specific sensor network, there are two preferred methods: information gathering by 

collection, and information gathering by registration. The former is akin to a web crawler – 

an automated software agent that methodically searches web pages and pulls data to create 

entries for a search engine index. The latter (and their preferred) method  takes into account 

the independence of sensor networks by allowing them to push data according to their own 

access policies. 

 According to their architecture, a sensor network registry would reply to a user’s 

query and would be controlled by a sensor network operator (who would essentially establish 

general user permissions). Information about the sensor network is stored within the registry 

and is fetched by a query processor. Park, et al. insist that the query-reply process is relatively 
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simple, but instead the difficulty lies in determining which information the sensor network 

registry should maintain, and how this information should flow within the system. 

 Their approach to determining the appropriate information to be stored is based on 

the types of queries that can be posed. By examining all 31 combinations of Who, What, 

When, Where, Why, and How (5W1H), and their significance to the user and operator, the 

authors formally establish a set of usable query parameters. Their parameters – operator, 

location, role, and sensor type – form the basis for an expandable “query grammar.” In this 

way, sensor network queries can be tailored to be as general or specific as necessary, and the 

best possible answers can be provided. 

2.5 Multisensor Data Fusion 

Multisensor data fusion is the application of processing and reduction techniques to 

combine data from multiple sensors and various knowledge sources. The objective is to 

provide a better understanding of the phenomena under examination than what could be 

achieved by the use of a single sensor [35]. In the early 1980’s, the U.S. military recognized a 

need to automate information processing for location, tracking, and identification of military 

entities such as tanks, missiles, and aircraft. By 1986 the Joint Directors of Laboratories 

(JDL) Data Fusion Working Group was formed to establish a fusion process model and a 

common language for military researchers and system developers to share. 

The JDL data fusion process model shown in Figure 2 identifies five levels of data 

refinement that are applied iteratively; each level builds on the previous. From sensory data, 

entities are identified and then compared to reveal any relationships among them. 

Relationships form the basis of hypotheses which can be used to fulfill simple objectives 

(such as enhancing noisy surveillance footage) to more complex objectives (such as 
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predicting enemy intent). Borrowing some of the ideas established by the JDL model, several 

other data fusion models were developed in the years following to fulfill military and non-

military data processing needs [36], [37], [38]. Some of these needs include target tracking 

[39], autonomous robotics [40], and biomedical imaging [41]. 

Source
Pre-Processing

Level One
Object

Refinement

Level Two
Situation

Refinement

Level Three
Threat

Refinement

Level Five
Cognitive

Refinement

Human
Computer
Interaction

Source

Level Four
Process

Refinement

Support
Database

Fusion
Database

Database Management System

 
Figure 2:  The JDL Fusion Model [42] 

Figure 2:  The JDL Fusion Model 

Although data fusion models specify the order and types of processes required for 

various data fusion applications, data fusion architectures are selected to specify how the 

sensing nodes will share their data, where the data is processed, and to what degree data is 

reduced. Traditionally, military data fusion architectures have been centralized – the sensing 

nodes transmit their raw data to be processed and reduced at a central location. Centralized 

fusion architectures usually demand a large amount of bandwidth. Decentralized 

architectures implement some data reduction (such as coordinate translation and image 

preprocessing) at the sensing nodes prior to transmitting. Although the raw data is reduced 

to state vectors, thereby reducing the bandwidth requirement, all subsequent processing is 
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forced to rely on approximations made at the sensing nodes. Hybrid fusion architectures 

offer flexibility to choose a centralized or decentralized approach in response to network, 

data fidelity, or processing constraints. Hybrid architectures offer the flexibility of being able 

to command sensors to send raw data or reduced data as the situation requires. Thus, the 

bandwidth needed to transmit data and the power required to process data would increase 

and decrease appropriately. However, this flexibility comes at the price of process 

monitoring overhead which is required to determine when either operating mode is 

appropriate [42]. 

Multisensor data fusion yields several qualitative and quantitative benefits. Generally, 

an array of sensors provides extended spatial and temporal coverage over an area or a 

phenomenon. As a result, the probability of successfully detecting objects and events is 

increased. Joint information from multiple sensors reduces the set of hypotheses about a 

target or event, thus reducing ambiguity [43]. Particularly among sensors of the same type, 

multisensor data fusion results in improved resolution. 

In order to reap the benefits of multisensor data fusion, there are several things to 

consider - most of which should be introduced early on in the system design phase. Some of 

these considerations include:  

• There is no substitute for a good sensor.  

• Downstream processing cannot make up for errors (or failures) in upstream 

processing. 

• There is no perfect fusion algorithm that is optimal under all conditions. 

• The data fusion process is not static but rather iterative and dynamic, and continually 

in need of refinement [43]. 
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Regardless of the size or application intended for a data fusion system, these and other ideas 

must be seriously considered to avoid inaccurate estimation and poor data interpretation. 

2.6 Summary  

 In this chapter, we provided background information for several key concepts that 

related to our research. We began with a brief history behind the cognitive radio and 

cognitive network. Then, we compared various node localization approaches used today. We 

also surveyed research within the wireless sensor networks and multisensor data fusion 

fields.   
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III. Methodology 

3.1 Introduction 

 The purpose of this chapter is to describe the tools and processes used to conduct 

our experiments. Although we performed experiments using two different approaches – a 

real-time approach and a post-processing approach – only the latter will be discussed here 

since it is the more mature of the two. However, we address the real-time approach in 

Appendix B and offer some suggestions to improve it. 

In Section 3.2 we introduce our major tools: the GNU Radio Development software 

and the Universal Software Radio Peripheral (USRP). Section 3.3 introduces our data 

collection and data reduction methodologies. The hardware characterization procedure we 

used prior to experimenting is outlined in Section 3.4. Our node localization algorithm is 

explained in Section 3.5. And in Section 3.6 we provide details regarding our collaboration 

experiments. 

3.2 The GNU Radio Development Software and Universal Software Radio Peripheral 

 Together the GNU Radio development software and USRP software-defined radio 

form the core components of our research implementation. In the following sections we 

give a brief history of both components, and explain two important parameters that 

governed how RF signals were captured – the decimation rate and the Fast Fourier 

Transform (FFT) size. 

3.2.1 GNU Radio 

GNU Radio is a free [44] software development toolkit specializing in signal 

processing and is maintained by Eric Blossom. It was originally conceived as a means to 

acquire high-definition television signals. Over time, it has evolved into an empowering tool 
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that helps people learn about and explore new ways of using the electromagnetic (EM) 

spectrum [45]. In the four years since its creation, GNU Radio has grown into a widely used 

cross-platform package that supports software-defined radio systems. Part of its success is 

derived from a flexible, process block abstraction which allows software developers to 

manipulate signals by appending a series of individual signal processing events. Written 

primarily using the Python programming language, GNU Radio applications declare the 

linkages between signal processing events (also called signal processing blocks). The signal 

processing blocks themselves and performance-critical algorithms are implemented in the 

C++ programming language. Typically they are imported at the very beginning of a Python 

script. See Appendix A for a short tutorial of the coding structure. 

3.2.2 USRP 

The GNU Radio project developed the USRP as a relatively low cost ($800) software 

radio under the direction of Eric Blossom and a team led by Matt Ettus [45], [46]. It too 

gained wide adoption through flexibility – offering a hardware platform that is easily 

reconfigured by adding or removing interchangeable daughterboards, each designed to 

operate within specific bands of the EM spectrum (DC to 5.9 GHz). For our research we 

used the USRP version 1 hardware as shown in Figure 3. Receiver and transmitter 

daughterboards are affixed to the USRP motherboard which houses four analog-to-digital 

converters (ADCs) and four digital-to-analog converters (DACs), and a field-programmable 

gate array (FPGA) for high-speed floating point signal processing. A USB 2.0 controller is 

the sole interface between the radio hardware and the radio software (which resides on a 

host computer). These components are identified in Figure 4 and listed in more detail in 

Table 1 and Table 2. 
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Figure 3:  USRP version 1 hardware enclosure displaying external interfaces 

Figure 3:  USRP version 1 hardware enclosure displaying external interfaces 
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Figure 4:  Top-down view of URSP version 1 main board and daughterboard components 

Figure 4:  Top-down view of USRP version 1 main board and daughterboard components 
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Table 1:  USRP Motherboard specifications 

Table 1: USRP Motherboard specifications [46] 

 
Table 2:  USRP Daughterboard specifications (partial list) 

Table 2: USRP Daughterboard specifications (partial list) [46] 

 

3.2.3 Decimation and FFT size 

The decimation rate and the FFT size are two fundamental parameters that affect 

how signal data is represented before they are manipulated by a Python script. But before we 

explain these parameters, we must discuss the USRP's sampling process. All of the USRP 

components are tied to the FPGA as shown in Figure 5, and are driven by the 

motherboard’s clock which operates at 64 million cycles per second (MHz). Analog signals 

received by a daughterboard are streamed to the ADC where they are digitized. Once 

digitized, the stream of signal bits is passed through the FPGA to the USB 2.0 controller. 

Finally, the signal bits are streamed via the USB 2.0 cable to the host computer where they 

are manipulated. 

  USRP Motherboard 

FPGA 
A/D 
D/A 

Interface 
Power Requirements 

High-speed USB 2.0, 480 Mb/s 
6 Volts DC, 0 ~ 3.5 Amps 

2  1/8 " x 7 " x 8  1/4 " (with enclosure) 
1  1/2 " x 6  1/4 " x 7 " (without enclosure) 

Dimensions 

EP1C12 Q240C8 Altera Cyclone 
4 x AD9862 12-bit, 64 MS/s, Bandwidth: 32 MHz 

4 x AD9862 12-bit, 128 MS/s, Bandwidth: 32 MHz 

Name Operating Band Notes 
Receive only 
No mixers, filters, or amplifiers present 
Transmit only 
No mixers, filters, or amplifiers present 
Receive only 
Automatic Gain Control 
Based on standard TV tuner module 

Basic RX 

Basic TX 

TVRX 

      USRP Daughterboards (partial list) 

1 MHz - 250 MHz 

1 MHz - 250 MHz 

50 MHz - 860 MHz 
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ADC

ADC

ADC

DAC

DAC DAC

DAC

FX2
USB 2 

Controller

 
Figure 5:  Block diagram of the USRP hardware interfaces [47] 

Figure 5:  Block diagram of the USRP hardware interfaces 

The decimation rate d is a user-defined, positive integer which specifies the sampling 

rate that the FPGA applies to a received signal. This rate is a fraction of the ADC's 64 MHz 

sampling rate and is usually specified as a base-2 value (2, 4, 8, etc.). Thus, a decimation rate 

of 4 instructs the FPGA to sample a digitized received signal at a rate of: 

64×106cycles/sec
4 cycles/sample

=16×106samples/sec 

 

(1) 

which is more commonly written as 16 Mega-samples/sec (MS/s). Alternately stated, given a 

decimation rate d = 4, the FPGA will take every fourth sample of a signal that was originally 

captured at 64 MS/s and discard the other samples. What results is a digitized version of the 

received analog signal that has been effectively sampled 16 million times per second. 

 The FFT size is a base-2, positive integer that affects a sampled signal in both the 

time and frequency domains. In the time domain, the FFT size specifies the number of samples 

to be taken from the input signal. This same value also defines the number of frequency bins a 
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digital signal will be represented by when it is converted to the frequency domain. It is most 

commonly represented as N in the discrete Fourier transform (DFT) equation: 

 

(2) 

where 

X(m) = the mth DFT output 
x(n) = the discrete time signal 

N = number of frequency bins, and the number of samples 
of the discrete time signal 

 
The ADC (which deals with received signals in the time domain) uses the FFT size to 

determine the number of samples to take of the input signal, whereas the decimation rate is used 

to specify the rate at which those samples are taken. In our data manipulation code (which 

primarily deals with received signals in the frequency domain), the FFT size determines the 

number of frequencies used to represent the received signal as it is transformed into the 

frequency domain.  

For the purposes of our research, we needed to find a decimation rate and an FFT 

size that would represent the received signals in sufficient detail for manipulation. Our 

general goals were to sample incoming signals quickly enough to avoid aliasing, and to make 

the frequency bins sufficiently narrow. Together, these goals intended to ensure that the 

received signals were not misrepresented so that an automated algorithm could accurately 

identify occupied stations (as explained in Appendix B). 

3.2.4 Determining the Decimation Rate and FFT Size 

In many of the GNU Radio scripts included with the development package, the 

default decimation value is preset to 8. Using the default value as a starting point, we began a 

comparison of different decimation rates given an arbitrary, fixed FFT size of 512 points. To 
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make our comparison, we tuned a USRP to a center frequency of 92 MHz and observed the 

resulting power spectral density (PSD) plots given decimation settings of d equal to 4, 8, and 

16. Figure 6 depicts the time-averaged PSDs for each of the three settings. One of the first 

observations we made was that the widths (viewable bandwidths) of the plots vary. As the 

decimation rate was increased, the viewable bandwidth of the USRP decreased. For example, 

given a decimation of 4, the viewable bandwidth is 16 MHz ([84, 100] MHz), whereas for a 

decimation of 16, the viewable bandwidth is only 4 MHz ([90, 94] MHz). Just as the 

decimation rate affects the rate of sampling in the time domain, it also affects the sampled 

bandwidth in the frequency domain by taking a fraction of the maximum viewable 

bandwidth (as set by the USRP sampling rate). Thus a bandwidth of [-Fs, +Fs] is reduced to 

[-Fs/d, +Fs/d]. 
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Figure 6:  Decimation value Comparison for d = 4, 8, 16 (Note: The sharp peak occurring 
at 92 MHz for the d = 4 case may be the result of a nearby electronic device or an air 
conditioning unit. During our research we observed that these devices tend to emit energy 
around the upper portion of 91 MHz.) 

Figure 6:  Decimation value comparison for d = 4, 8, 16 
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Additionally, Figure 6 shows that the shapes of the plots vary in two important ways. 

First, the level of detail given by each plot increases as the decimation value increases, which 

can be partially attributed to the fact that regardless of the length of the x-axis, each case is 

represented by a fixed number of points. Although the upper plot gives a cursory view of 

how many stations may exist between a much larger band of frequencies, it does not capture 

some of the nuances that would help us precisely determine where stations begin and end. 

Second, we see that the shape of the noise floor is more prominent in the 'd = 8' condition 

(as indicated by the arrow). By raising the middle 80% of the bandwidth (by 10 dB) our 

automated station identification algorithm (as described in Appendix B) would be adversely 

affected because it relies on a comparison between a station's supposed average power 

(across its bandwidth) and the total average power contained in the viewable bandwidth. 

Thus, the stations residing on the edges of the viewable band would be unfairly dwarfed and 

ignored. Given these observations, we decided to select 16 as our decimation value, and to 

continue to use it as we explored our choice for an appropriate FFT size. 

Using a similar approach, we ran trials using FFT sizes above and below our starting 

point. Figure 7 depicts time-averaged PSD plots for cases where N equals 256, 512, and 

1024. The most significant observations we made were influenced by the levels of detail 

given by each plot. As expected, the larger the FFT size, the greater the detail that can be 

displayed. For example, the first plot depicts a general outline of the occupied channels for 

N equal to 256. Although this plot is useful for confirming the existence of strong radio 

stations, it would be difficult to discern the full widths of particularly weak channels, as is the 

case at 91.3 MHz. By doubling the number of frequency bins used to represent the signal, 

the 'N = 512' case shows improvement in the level of detail that describes where channels 

begin and end, as well as the upper and lower sideband widths (as seen at 92.3 MHz – an 
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HD radio station). The bottom plot of Figure 7 shows the 'N = 1024' case, which does not 

appear to be a significant improvement over the previous. The additional data points provide 

more detail mostly to the noisy areas, but this offers us no additional value. As a result, we 

decided to use an FFT size of 512.  

Figure 7:  FFT Size Comparison for N = 256, 512, 1024 

Based on what we observed in Figure 6 and Figure 7 we decided to use a decimation 

of 16 and an FFT size of 512. All subsequent tests and experiments operated under these 

two parameter settings. 

3.3 Data Collection and Data Reduction Methodologies 

Our post-processing approach organized the data collection and data reduction 

procedures as two distinct steps. First the USRP hardware was used to capture signal data 

using a GNU Radio Python script. Then, our MATLAB script was applied to convert, 

calculate, and extract RSSI information from the signal data. The algorithms found in the 

usrp_capture_nsamples.py and Data_to_PSD.m scripts are explained here. 
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Figure 7:  FFT Size Comparison for N = 256, 512, 1024 
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Also, we describe an unexpected problem that we encountered during initial data collection 

attempts, and give the corrective solution we applied to eliminate its effects. 

3.3.1 USRP Data Collection 

The usrp_capture_nsamples.py script was packaged with the GNU Radio 

development software. The purpose of the script was to use the USRP hardware to capture 

complex signal data and then store them into a binary-encoded file according to the 

arguments it specified: decimation rate, FFT size, tuning frequency, and file name. Since the 

script performs only one iteration each time it is executed, we needed to find a way to run as 

many successive iterations as necessary to continuously capture RF signals. Borrowing 

heavily from a wrapping script created by Reginald Cooper [48], we implemented a process 

that imported the signal capture program as a function, so that it could be called repeatedly 

until interrupted by the user. The pseudo code of Figure 8 shows that during each iteration, 

a new file name was formatted to include the current system time (as Epoch time), and an 

iteration count value as in: data_1231832819.02_991.bin. Given our standard 

FFT size of 512 points, each data file was approximately:  

 
(3) 

or 4 kilobytes in length. 

1
2
3
4
5
6
7
8
9

while iteration_index >= 1

store returned values to file

increment iteration_index

declare USRP parameters (decim, FFT_size, tune_freq)
create filename as file_path + 'data_' + current Epoch time + '_' + iteration_index + '.bin'

call usrp_capture_nsamples

 
Figure 8:  Pseudo code for data collection wrapper function 

Figure 8:  Pseudo code for data collection wrapper function 
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Figure 9 depicts signal data for one capture iteration as a pair of in-phase and 

quadrature phase signals that are 128 microseconds in duration. The signal duration can be 

verified using the following expression: 

512 samples × � 64 
MS
s

 × 
1
16

 �
-1

× 2 = 128 μsec 

 

(4) 

where the in-phase and quadrature phase sampling are treated as independent, interleaved 

events [49], hence the factor of two. 
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Figure 9:  Typical in-phase and quadrature received FM signals 

Figure 9: Typical in-phase and quadrature received FM signals 

After the desired number of iterations are completed (usually determined by elapsed 

time), what remains is a folder of identically-sized signal data that is ready for reduction. It 

should be noted, however, that the data collection folders can grow very large (as in number 

of files) after only several minutes of data collection. For example, a 30-second collection 

period yields nearly 500 files. Data collections lasting several minutes could not feasibly be 
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transferred to another workstation for data reduction because more files require more pre-

write disk activities. Thus, we forced fewer files to be created by adding a brief sleep period 

(0.15 sec) at the end of the capture iteration. This helped to reduce the file creation rate to 

approximately 140 files per 30-second period, or about 4.7 files per second. 

3.3.2 MATLAB Data Reduction 

Our data reduction script was designed to take the signal data files collected by the 

USRP and reduce them to a time-varying list of received power values given a station of 

interest. First, the binary files were read and their complex signal data were extracted as two 

separate signals - the real (in-phase) and imaginary (quadrature phase) parts. As given in 

Figure 10, the reduction process continued with the creation of a whole signal (represented 

in rectangular form), which was transformed into the frequency domain by applying the Fast 

Fourier Transform function. Once the signal was converted to a frequency domain 

representation, a power spectral density (PSD) was calculated in order to determine the 

received power at each frequency. Line 4 in Figure 10 merely shifts the spectral 

representation from a [0, 2π] display into a more intuitive [-π, +π] display. 

1 whole_signal = real_part + ( j * imaginary_part )

2 whole_signal_FFT = fft( whole_signal ) / length( whole_signal )

3 whole_signal_PSD = abs( whole_signal_FFT )2

4 whole_signal_PSD = fftshift( whole_signal_PSD )
 

Figure 10:  Pseudo code that converts a complex signal (written in rectangular form) and 
transforms it into a PSD using the magnitude squared of the Fourier transform 

Figure 10:  Pseudo code that converts a complex signal into a PSD 
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For each file, the conversion process was performed by using the expression for the 

DFT (as given in Section 3.2.3), and an expression for the power spectral density: 

XPSD(m)=|X(m)|2 
 

(5) 

where the magnitude of the DFT signal is taken and then squared. Pictorially, the 

transformation is demonstrated in Figure 11. 
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Figure 11:  Complex time domain signals are converted to a power spectral density in the 
frequency domain using the magnitude-squared of the signal’s Fourier Transform.. 

Figure 11:  Complex time domain signal conversion to a PSD via the Fourier Transform 

Using a PSD calculated from a single file made it easy to identify some of an FM 

station's features such as peak power. When combined with the PSDs of all subsequent files 

it became possible to see how the strength of a station (henceforth, channel) fluctuated over 

time. When viewed as an animation, the time-varying PSD revealed pervasive noise that also 

fluctuated over time. The additive effects of the noise made the PSDs appear jagged, thereby 

making it difficult to precisely identify the lower and upper frequencies of the radio 

channels. In order to minimize these effects we appended a process that took the average of 

the PSDs at regular intervals in time. By using a time-averaging process, as shown in Figure 

12, the resulting PSD shape became smoother, and radio channels were more readily 

identified. (This also made the automated station detection algorithm easier to implement.) 
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Figure 12:  Several noisy PSDs are averaged over time to produce a less noisy PSD – a 
spectral summary – from which channels can be more readily identified. 

Figure 12:  Several PSDs are time-averaged to reduce noise 

We manually extracted received signal data by first using the time-averaged PSD to 

note the lower and upper frequencies that defined a channel of interest. Then, the frequency 

values were translated into start and end indices for a subset of columns within a time-

averaged-PSD matrix. Using the column indices, we summed the received power values 

along each row of the matrix. Finally, what resulted was a time-varying vector of channel 

RSSI values. 

3.3.3 Unexpected Problem: Ringing 

Only after we began the data reduction process in MATLAB were we able to identify 

a problem in the data collection process. As depicted in Figure 13, there were some instances 

in which the complex signals we subject to an abnormal ringing effect within the first 23 

samples (or 5.75 µsec) of data. In the frequency domain, these large, narrow impulses 

transformed into broad spectral densities that dwarfed all other PSDs. Given the transient 

nature of the ringing and their presence only at the beginning of some sampling iterations, 

we suspected that somewhere in the USRP a power surge occurs when it is commanded to 

start sampling (via the usrp_capture_nsamples script). Our solution was to extend 

the number of samples we would normally collect by specifying an intermediate FFT size of 
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512 + 23 = 535 points in the data collection code, and then we removed the first 23 samples 

for all signal data files as they were imported into MATLAB. The FFT size used in the data 

reduction code remained unchanged. 
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Figure 13:  In-phase and quadrature received FM signals with ringing 

Figure 13:  In-phase and quadrature received FM signals with ringing 

3.4 Hardware Characterization 

 Aside from external sources of measurement error, particularly multipath fading and 

shadowing for RSSI-based applications, it is also important to recognize internal sources of 

error. Energy-based localization techniques greatly depend on how closely a sensor set 

responds given the same input conditions [19]. The RSSI technique we implemented is of no 

exception. Thus, we developed a procedure that helped to determine the uniformity of our 

sensing nodes. Using the same input signal applied to each sensor, we were able to make a 

comparison by overlaying their frequency responses onto a single plot. 
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The hardware set up for our characterization procedure is shown in Figure 14. Each 

sensor was given a -3 dBm (158.3 mV0-peak) sine wave from a signal generator (Agilent 

E4438C) via a SubMiniature version A (SMA) cable – first to the Basic RX port and then to 

the TVRX port. The option to connect all sensors to the signal generator simultaneously 

using SMA splitters was deferred in favor of connecting each radio one at a time. This 

decision helped to ensure a more uniform received signal among all sensors. It also 

eliminated the need to characterize losses across each splitter – a time-consuming process. 

USRP

Host
Computer

Signal
Generator

SMA
Cable

USB
Cable

 
Figure 14: USRP hardware characterization setup 

Figure 14:  USRP hardware characterization setup 

In anticipation of outdoor experiments, we centered a 4 MHz band of frequencies 

about 92 MHz to perform our characterization test because it was the least crowded by local 

radio stations. The -3 dBm signal was swept through nine evenly spaced frequencies within 

this band (90, 90.5, 91 MHz, etc.) and dwelled at each frequency for one minute before 

advancing to the next. Figure 15 depicts the power received by one of our software radios 

over time (increasing from right to left), and across the band of frequencies (increasing from 

front to back). Each sample was obtained using a decimation rate of 16 cycles per sample 

and an FFT size of 512 points. 
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Figure 15: Time-varying plot of the characterization signal’s PSD as received by the USRP 
labeled F15; arrow indicates signal energy shifted in frequency due to clipping effects 

Figure 15:  Time-varying plot of the characterization signal’s PSD 

Once all of the radios finished sampling the characterization signal, the sample data 

for both their Basic RX and TVRX daughterboards were reduced by extracting only those 

areas where the swept signal was present – the gray pillars of data in Figure 15. On average, 

each pillar within the sweep band formed a channel approximately 23 kHz wide for the Basic 

RX daughterboards, and approximately 70 kHz wide for the TVRX daughterboards. The 

channels occurring at 90 MHz and 94 MHz were not relied on because they were subject to 

clipping effects. Additionally, the signal energy intended for 94 MHz was displaced to the 

other side of the viewable band. This is true for all sample data sets, and is highlighted in 

Figure 15 with an arrow. Subsequent activities were designed to avoid the bounding 

frequencies. 
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Figure 16:  USRP Hardware Characterization Linear and Log-Scale Plots: Basic RX 
daughterboard (top row), TVRX daughterboard (bottom row). 

Figure 16:  USRP hardware characterization: linear and log-scale plots 

After computing the average received signal power within all channels (as in Section 

3.3), we were able to compare the channel RSSI values for both types of daughterboards by 

creating the plots of Figure 16. The linear scale plots of Figure 16 show that the channel 

RSSI values for the TVRX daughterboards are, on average, an order of magnitude greater 

than those of the Basic RX daughterboards. In the log-scale plots, this order-of-magnitude 

difference is represented as a 10 dB gain. The TVRX daughterboard gains are due to their 

built-in RF front end circuitry which amplifies received signals as they are translated to an 

intermediate frequency [50]. (The Basic RX daughterboard does not have an RF front end -- 

see Table 2.) We believe that because of manufacturing tolerances for the analog front end 

components, gains are not applied identically between the TVRX daughterboards, hence the 

slight variation in the TVRX linear-scale plot. Overall, Figure 16 reveals that the respective 

daughterboards respond similarly (within 0.46 dB) when given the same input signal. 



35 35 

Despite the general variation of its mean values, the TVRX daughterboard was 

selected as the primary interface for conducting our experiments. Since gains are applied by 

an RF front end, sensor arrays based on the TVRX daughterboard could be made to 

encompass a larger search area, thereby affording some additional topology design flexibility. 

3.5 RSSI Localization Implementation 

In [9] Martin and Thomas derived a new sensor localization algorithm that applies a 

Maximum Likelihood (ML) approach to estimate a transmitter's position, orientation, beam 

width, and transmit power using RSS measurements. A large portion of their paper's focus 

was centered on transmitter directionality, as previous research generally ignored non-

uniform antenna gain patterns. To demonstrate their algorithm, they created a MATLAB 

simulation which modeled sensing and transmitting nodes that operated within a log-normal 

fading environment, and then applied their ML approach to various distributions of wireless 

nodes. Although we were unable to devise a suitable directional antenna that functioned 

within the FM band, we were fortunate to be able to borrow the portion of their code 

(findomni2.m) that implemented their localization algorithm against omnidirectional 

nodes (which they used for performance comparisons). Here we will discuss how their 

localization algorithm works, and address two considerations we made prior to designing our 

experiment. 

3.5.1 RSSI Localization Algorithm 

In general, the localization algorithm for omnidirectional nodes uses the same 

approach as for directional nodes. Beforehand, all nodes are arranged within a rectangular 

coordinate plane. The sensing nodes (whose positions are known) observe the received 

power from a transmitter located at some unknown point in the plane. Given a similar 
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scenario, the findomni2 function takes the following arguments: each sensing node's x 

and y coordinates, the RSSI value observed by each sensing node, and two vectors that 

define the boundaries and number of points within a rectangular search space (one vector 

for each dimension). As an example, Figure 17 depicts a search space that has been defined 

around a simple topology of nodes. 

 
Figure 17:  Example node localization search space 

Figure 17:  Example node localization search space 

Using the observed RSSI values and the locations of the nodes, every point in the 

grid is evaluated to identify the likelihood that a transmitter resides there. Two types of 

calculations are performed at each grid point, one at a time -- preliminary calculations and 

likelihood calculations. The preliminary calculations identify the mean distances (and mean 

squared-distances) between all sensing nodes and the current search point, the variance of 

the sensors' distances to the current search point, the average RSSI value received by the 

sensor network, and the mean power-distance product - an average of the power received by 

each sensor, scaled by their separation distance to the current search point. 
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The likelihood calculations are performed in two phases. First, estimates of the best 

possible transmitter characteristics are calculated, which assumes that a transmitter exists at 

the current search point. Then, an error is calculated between the supposed transmitter 

characteristics (what was observed) and the best possible transmitter characteristics (what 

would have been observed). These calculations (as derived in [9]) are expressed as: 

 
(6) 

 

(7) 

 
(8) 

where 

P0best= the transmitter power that would have been observed 

npbest = the calculated path loss exponent 

fiterror = the normalized difference between the power observed and the 
power that would have been observed 

p = the power received by the sensing nodes (arranged as a 
vector) 

d = the distances between each node and the current search point 
(arranged as a vector) 

 

The computed error is a direct representation of the likelihood that a transmitter (with 

similar observed properties) exists at the current search point. After all search points have 

been evaluated, the computed error values form a matrix whose entries coincide with the 

search grid. Therefore, the search point that bears the lowest error value represents the most 

likely position of the transmitter. Figure 18 illustrates a sample fit error matrix taken as a 

surface and viewed from the side. 
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Figure 18:  Example fit error surface viewed from the side 

 3.5.2 Usage Considerations 

Before integrating the localization algorithm into our experiments, we made note of 

some usage considerations. Our first concern regarded how fine the search grid would be 

"drawn." Having fewer points meant having fewer cumulative calculations. However a fairly 

coarse grid would yield poor position estimate resolution. On the other hand, a very fine grid 

would greatly increase the search space resolution, but may do so needlessly since RSSI 

measurements can fluctuate greatly. Thus, we resolved to define our search grid points to be 

evenly separated by 1 foot in both directions. 

Our second concern regarded sensor placement within the search space. The grid in 

Figure 17 does not include points where either the sensors or, more importantly, the 

transmitter lie. In fact, a search grid of this type would distort position estimates as none of 

the possible positions are correct solutions. Instead we resolved to design our experiment 

such that the transmitters would be placed on top of a grid point. In this way, we could 
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Figure 18: Example fit error surface viewed from the side 
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accurately determine whether a position estimate was correct, and if not, calculate a valid 

position error. Although the sensor positions need not coincide with the search grid, we 

designed our sensor topologies to have any given sensor placed no farther than half a unit 

(or half a foot) away from a search point, in both the x and y directions. 

3.6 Collaboration Experiments 

Our research intended to use real-world experimentation to demonstrate 

collaborative localization, and thereby validate (or challenge) simulation results based on the 

quality of their position estimates. The nature of our experiment design was influenced by 

the tools we had available, particularly the number of software-defined radios we could use. 

In this section, we explain how we applied a time shift concept to amplify our post-

processing approach, which turned our seemingly small number of nodes into a flexible 

network of 21 collaborative topologies. However, we also share the measures we put in place 

to help ensure time shift validity. Then, we describe the conditions of our experiment during 

the execution phase. Finally, we discuss how Martin and Thomas' simulation was configured 

in order to repeat our real-world experiments under a simulated RF environment. 

3.6.1 Overview 

We had six USRP software-defined radios available to us. They were divided into 

two roles; five of the radios were declared sensing nodes, and one radio was declared a 

transmitting node. The sensing nodes ran the usrp_capture_nsamples.py script to 

collect signal data. And the transmitting node broadcasted audio signals using an existing FM 

transmission program (fm_tx4.py) that came preloaded with the GNU Radio 

development package. To differentiate the USRPs, the sensing nodes were named after U.S. 

military F-series aircraft - "F15," "F16," "F22," "F35," and "F117" - while the transmitting 
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node was designated "TX." When referred to in our topology legend in Appendix C, the 

sensing nodes are identified according to a number, from one through five, respectively. For 

example, "F15" appears as "1," "F16" appears as "2," and so forth. 

3.6.2 Time Shift Concept 

The number of SDRs on hand was a strong limiting factor that affected many facets 

our design. Our sensor set would determine the spatial diversity, reliability, and performance 

of our topologies. Having too few sensing nodes would severely limit the number of shapes 

and sizes of our sensing topologies. Also, sparse topologies would be more likely to suffer in 

the event of a poorly performing node. Thus, we needed to find a sensible way to expand 

our design options so that we could increase the likelihood of achieving sensible results. 

Unlike the real-time approach, which interleaves the data collection and reduction 

processes with every iteration, the post-processing approach separates these events into two 

distinct phases. This distinction provided an opportunity well-suited for experimental 

analysis. Since data collection and data reduction did not occur concurrently, we were able to 

conduct multiple small-topology experiments at different points in time. Then, we combined 

the data from the experiments as if they occurred concurrently. Finally, we applied our data 

reduction process to the accumulated data. For example, sensing nodes were arranged as 

shown in Topology A in Figure 19 and collected signal data from a transmitter located at a 

nearby position, unknown to them. Then, the sensing nodes were rearranged to observe the 

same transmitter from different locations (as depicted in Figure 19, Topology B). 
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Figure 19:  Sensor configurations used for time shift 

Figure 19:  Sensor configurations used for time shift 

By combining the signal data from our five sensing nodes, that sensed the same 

transmitter (each from two independent locations), we essentially emulated a ten node 

topology that acted upon two transmitters (separately). Figure 20 depicts our combined 

sensor topology, and overlays the locations where we placed our transmitter node. (See 

Figure C1 for an enlarged topology legend that shows the sensor identities.) 
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Figure 20:  Complete sensor topology as a result of applying time shift 

Figure 20:  Complete sensor topology as a result of applying time shift 
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The flexibility of the post-processing approach allowed us to capitalize further on the 

time shift concept. By excluding the data collected by some sensors, we could select a 

number of sub-topologies from our emulated set of 10 nodes. For example, Figure 21 shows 

how a Rectangle topology was formed when we excluded signal data from six nodes. 

Repeating this process, we were able to identify 21 sub-topologies that varied by the number 

of nodes, shape, and size (as in perimeter). The sub-topologies took the following forms: 

Triangle, Rectangle, Hexagon, Line, and one topology that included all of the sensors. With 

the exception of the Line and All-Sensors topologies, every other topology type was varied 

by excluding, and then including, the node located in its center. For example, the Rectangle 

topology in Figure 21 was taken as shown, and again with the sensor located at coordinate 

(35, 41). All 21 sub-topologies are depicted in Appendix C with overlays of the transmitter 

locations. 
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Figure 21:  The nodes of a rectangular sub-topology are selected while the remaining 
sensors are excluded (subdued) 

Figure 21:  Rectangle sub-topology example 
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Figure 22: Histograms of sensor inclusion where F15 = [1, 6], F16 = [2, 7], F22 = [3, 8], 
F35 = [4, 9], and F117 = [5, 10] 
Figure 22:  Histograms for sensor inclusion  

The histograms of Figure 22 show how often each sensor position, and how often each 

sensor was used to form our sub-topologies. Along the x-axis of the leftmost histogram, 

sensor positions are listed using the following convention. As before "F15's" position is 

designated by "1" and "F117's" position is designated by "5." Positions 6 through 10 

represent the time shifted positions of the same five sensors - position 6 is "F15's" second 

position, position 7 is "F16's" second position, and so on. In general, the first sensor 

positions (Topology A in Figure 19) were used more often than the second sensor positions 

(Topology B in Figure 19). The rightmost histogram in Figure 22 shows the frequency of 

sensor inclusion. It indicates that "F22" and "F117" were tied as the two most-frequently-

included sensors. Both histograms helped us identify the critical dependencies of our 

topology choices. 

3.6.3 Design Measures for Time Shift Validity 

Although time shifting added a great deal of flexibility to our post-processing 

approach, its benefit would be moot unless our experiment design included an accurate data-
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alignment process. When we first introduced our data collection process (in Section 3.3.1), 

we explained that each signal data file was time stamped with the current system time. As 

listed in Figure 8, this timestamp was associated with the system time immediately before the 

signal capture function call. In this way, each signal capture could be identified according to 

when it was collected. However, in order to align the separate sets of data, they needed to be 

time stamped with respect to a common time reference. 

As part of our first design measure, we established a common time reference by 

creating a wired, local area network (LAN). The host computers for all sensing nodes were 

joined to the same subnet as the transmitter's host computer, which acted as the network 

time protocol (NTP) server. Under this architecture, the sensors' host computers would 

synchronize their system clocks by polling the time server upon system boot-up and 

periodically thereafter. Using an independent digital clock, we performed a simple test to 

confirm that all system time clocks were accurate to at least the nearest second. 

Using an NTP server allowed us to mark every signal data file with a timestamp 

based on a common-reference clock. Thus, we were able to keep our experimental 

procedure simple. Each node was commanded to start signal capture, one at a time. Once all 

of the nodes were capturing, we activated the transmitting node to broadcast an audio file 

for 61 seconds. After all trials and signal collections were complete, we merely needed to 

identify a common signal event (for example, the first peak of the received signal), and note 

its associated timestamp. So long as the transmitter emitted the same 61 seconds of audio 

during each trial, this alignment process was valid regardless of where or when a given 

sensor node made a signal collection. Without ignoring the fact that an emitted signal would 

be received at different times by antennas at two different locations, we performed a 

calculation to further justify our decision to align data in this fashion. Under free space 
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propagation of RF signals across separation distances no larger than 33 feet, the time 

differences of arrival among the sensing nodes are on the order of (9.8 x 108 ft/sec)-1 x 33 ft 

≈ 33.7x 10-9 seconds, or tens of nanoseconds. This figure of merit is much smaller than our 

timekeeping precision, and is therefore negligible. 

Our final design measure in support of time shift regarded how we implemented 

timestamps during the data reduction process. As stated before, the timestamps were given 

as Epoch time, which denotes the number of seconds since midnight of January 1, 1970 [51]. 

This number was given with decimal seconds, as in 1231832819.020. To help simplify 

our alignment and time-averaging processes, we ignored partial-second increments by 

truncating the timestamps to whole numbers of seconds. Doing this changed the 

"resolution" of contiguous data captures to be relative to the nearest second. For example, 

signal captures that occurred at 1231832819.020 and then at 1231832819.35 may 

have just as well occurred in the reverse order. Thus, when we applied our time-averaging 

process to datasets collected by any given node, we specified an averaging interval of one 

second. 

3.6.4 Experiment Execution 

Our collaboration experiment was conducted outdoors in an uncovered parking lot. 

Our equipment setup was no less than 50 feet away from vehicles or other large RF 

reflective objects. Weather conditions were more accommodating than usual for a typical 

Ohio winter: a high temperature in the low 40s, clear skies, 70% humidity, and winds from 

the South-southwest averaging 10 mph [52]. Our first order of business was to mark the 

sensor and transmitter positions on the parking lot surface since we were going to reposition 

the nodes during the four phases of our experiment (as given in Figure 23). Each node was 
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elevated 12 inches above the ground using plastic storage containers to minimize RF ground 

effects. The power and networking cables were routed along the ground to a cart that carried 

our portable power unit and network router. This cart was located at what would have 

appeared as coordinate (10, 10) in our topology diagrams - far enough to have little to no 

influence on the experiment devices. 
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Figure 23:  Four phases of the outdoor experiment 

Figure 23:  Four-phases of the outdoor experiment 

Before we began Phase I of our experiment, we followed a list of pre-test checks: (1) 

all network cable connections are secured and active, (2) all host computer clocks are 

synchronized to the nearest second, (3) all antennas are upright, fully-extended and 

positioned squarely above their mark, and (4) all sensor nodes detect the test audio broadcast 

from the transmitter. This set of pre-test checks helped to ensure that the sensor layout 

matched what we designed and that the equipment was functioning as expected. Between 

phases, this list was reduced to check-items (2) and (3). 

At the beginning of every phase, each sensing node was remotely started using a 

remote desktop application. Once all of the nodes had begun collecting signal data, the 

transmitter node was remotely activated, and a digital timer was started. After 61 seconds 

had elapsed, the transmitter was turned off and then the sensing nodes were commanded to 

stop signal collection. Upon completion of the final phase, all signal data were retrieved from 



47 47 

the host computers, and organized in preparation for data reduction (as discussed in Section 

3.3.2). 

3.6.5 Topology Simulation 

The simulation software, which we borrowed from [9], utilized a two-step approach. 

First, assuming a log-normal fading environment, received power values were generated for 

a randomly-placed network of sensors that were observing a transmitter. The transmitter's 

position was unknown to the sensor nodes. Then, the localization routine was applied to 

estimate various characteristics of the unknown transmitter based on the received power 

values and locations of the observing nodes. We modified the software so that we could 

simulate the performance of our sub-topology configurations. 

The first change we made was to create a wrapper function that iteratively invoked 

the simulation software much like our data reduction process invoked the localization 

algorithm, findomni2.m. Then, we adjusted the code that generated the simulated sensor 

positions to, instead, read the sensor positions that were based on our topological design. 

Then, the fading model variance parameter was adjusted to what we felt was comparable to 

the outdoor environment at the time of our experiment. This term (given in dB) governed 

how heavily the fading model was applied. A variance of 4 dB corresponded with an 

uncluttered environment (such as a desert), and a variance of 12 dB was associated with 

considerable levels of shadowing and multipath (such as an urban environment). Originally 

we selected a variance of 4 dB, but after reviewing the simulated data, we reduced this value 

to 3 dB because it yielded position error figures that were more on par with our experimental 

data. The final change we made was to disable the antenna shaping code and thus make the 

transmitter an omnidirectional emitter.   
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3.7 Summary 

In this chapter we described the tools we used to conduct our experiments. We also 

discussed how these tools were incorporated into our data collection, data reduction and 

hardware characterization procedures. A description of our localization algorithm was 

provided, as well as the details regarding how our collaboration experiments were conducted. 
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IV. Data Analysis 
 

4.1 Introduction 

Our data analysis process takes position estimation results from our node 

localization experiment -- conducted using actual hardware in an uncluttered outdoor 

environment -- and compares them with results for the same experiment which was 

reenacted in a simulated environment. The purpose of this chapter is to review all of the 

facets that helped us form a comparison between the topologies we tested and between the 

different environments they were tested in. In Section 4.2 we list, define, and justify the 

performance metrics we used in our comparison. In Section 4.3 we share our general 

hypotheses about topology performance based on the size of a given topology and its node 

distribution with respect to an emitter. Section 4.4 provides our observations and 

performance comparisons between the topologies as they operated in the outdoor 

environment (henceforth, real world), first according to their "helpfulness" (in terms of 

absolute error), and then with regard to their "effectiveness"(in terms of normalized error). 

In Section 4.5, we compare the real-world results with the simulated results to identify 

similar and dissimilar trends between them. 

4.2 Performance Metrics 

Our performance metrics were derived from the position estimates that were 

generated by our localizing sub-topologies. Using the known transmitter locations, we 

calculated position errors by evaluating 

 
 

(9) 

which is written more explicitly as, 
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(10) 

where xguess and yguess are the estimated transmitter coordinates; and xtrue and ytrue are the 

transmitter's actual coordinates. By performing this calculation for all position estimates, we 

created two time-varying error vectors for each sub-topology – one error vector with respect 

to each transmitter location. For example, Figure 24 compares the radial position errors for a 

triangle and a hexagon topology as they vary over time. 
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Figure 24:  Time-varying radial error comparison between Triangle_3 and Hexagon_1B 

Figure 24:  Time-varying radial error comparison between Triangle_3 and Hexagon_1B 

Since the radial position errors varied over time (as seen in Figure 24), we calculated 

the mean position errors for our topologies to quantify their performance. Then, we sought 

to qualify each topology's performance according to how precise (or consistent) its position 

estimates were, regardless of whether they were correct or not. This was done by calculating 

the variance of the position errors. By combining these two metrics – mean position error 

and position error variance – we were able to make absolute comparisons between our 

topologies according to how accurate and how consistent they were with their localization 

attempts. 
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4.3 General Observation Guidelines 

As can be observed in Appendix C, our topologies varied by size, shape, and 

orientation with respect to the transmitter locations. Some topologies surrounded a TX 

node, and some did not. Some topologies were very sparse, while others were relatively 

dense. These and other cursory observations were considered when we formed our short-list 

of guidelines which we used to gauge our data’s correctness. First, our general belief was that 

as more nodes surrounded an emitter, the average position error should be relatively lower 

because there would be more independent observations of the same phenomena as opposed 

to a sparse network. Second, for those topologies that had the option available, adding the 

center node should reduce the topology's position error variance. A node added to a 

topology's center would increase the topology's spatial diversity without disrupting its 

symmetry as opposed to adding the node somewhere beyond the topology's perimeter. And 

third, we believed that topologies which had a symmetrical distribution of nodes about (or 

near) an emitter would have lower average position error values than those topologies that 

were not. Symmetry would offer positive redundancy which would help reduce ambiguity, 

and thereby produce more consistent estimates. 

4.4 Real World Results  

Using the performance metrics we defined (in Section 4.2) we constructed the plots 

of Figure 25 and Figure 26 to compare topology performance against both transmitter 

locations. This type of plot shows the mean absolute error for each topology (shown as bars), 

as well as the variance associated with their position error distributions (shown as square-

ended stems). The mean absolute error plots can be used to look at topology performance 

on an individual basis or between topologies of the same size (as in number of nodes).  



52 52 

 
Figure 25: Mean absolute position error for all real world topologies against TX_1 

Figure 25:  Mean absolute position error for all real world topologies against TX_1 

For example, topologies 1 through 5 (the 3-node Triangles) can be directly compared 

with topologies 11 and 12 (the 3-node Small Triangles), but not with topologies 6 through 10 

(the 4-node Triangles). Using mean absolute error is but one way to make comparisons, such 

as determining which topology had the largest position error or which topologies were 

statistically similar. These kinds of comparison are good; however, a normalized comparison 

is more meaningful because it takes into account topology size. In this way, smaller 

topologies would be praised for exemplary performance, and larger topologies would be 

penalized for not performing better than their peers. Thus, we begin our comparisons using 

measures of mean absolute error to determine which topologies were the "most helpful", 

and then continue with an analysis of those topologies that were "most effective." 
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Figure 26: Mean absolute position error for all real world topologies against TX_2 

Figure 26:  Mean absolute position error for all real world topologies against TX_2 

As we delved deeper into the data to understand why particular results were the way 

they were, we spotted a problem. Looking again at the right plot of Figure 24, we saw that 

the position errors for both topologies started with a large decrease before carrying on as 

they should. This initial drop only occurred for some sets of data and for other sets there 

was a large change at the end of the time series. We were hesitant to believe that these events 

were caused by misalignment of the signal data. Instead, we believed it was caused either by 

a single, or a pair of "misbehaving nodes." (We discuss our efforts to identify these nodes 

later.) To avoid skewing our data as a result of a few outliers, we removed the first and last 

position estimate for all data sets before we made our comparisons. 

Comparing the plots of Figure 25 and Figure 26 we see that Triangle_3 (ID: 3) and 

Triangle_3B (ID: 8) have the largest mean absolute errors against TX_1 and TX_2 – 11.97 

feet and 17.32 feet, respectively. The topology layouts (in Appendix C) show that Triangle_3 

did not surround TX_1 and Triangle_3B's nodes were far removed from TX_2 
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(approximately 20-32 feet). On the other hand, Hexagon_1 (ID: 15) and Hexagon_1B (ID: 

16) produced the smallest mean errors – 3.79 feet and 3.5 feet, respectively. Both hexagon 

variants were spatially diverse and were symmetric. For example, symmetry with respect to 

TX_1 can be seen if a horizontal line is drawn across the middle of Hexagon_1, and a line 

drawn diagonally across Hexagon_1B (from top left to bottom right) reveals its symmetry 

with TX_2. 

Continuing with Figure 25 and Figure 26, Triangle_3 produced the largest variances 

in both cases – 34.96 feet2 and 22.13 feet2, respectively. But most surprising of all, against 

TX_1, Triangle_3B had the smallest error variance, which was very close to zero. We 

verified an approximate value of 2 × 10-29 feet2. Referring to the topology layouts, we saw 

that Triangle_3B's nodes surrounded TX_1 and were relatively close (approximately 4-13 

feet). Rectangle_1 (ID: 13) had the smallest error variance against TX_2 – 0.07 feet2. 

Additionally, we wanted to see how performance changed when topologies were 

switched from localizing TX_1 to localizing TX_2. More specifically, we wanted to observe 

the topologies that had the most dramatic changes to better understand how transmitter 

positioning played a role. The largest increase in position error was by Triangle_3B (12.85 

feet) since it was initially close to TX_1 and then relatively far from TX_2. The Line_3 

topology (ID: 19) had the largest decrease in position error (7.95 feet), which came to us as a 

surprise. Having a mean position error of 3.96 feet placed it within rank of the hexagon and 

rectangle topologies. This went contrary to our observation guidelines, which did not look 

favorably upon line topologies. The line topologies were not spatially diverse, they did not 

surround the transmitter, and they almost never had some form of symmetry about the 

transmitter (with the exception of Line_3 versus TX_1). However, from this dramatic 

performance improvement we learned that spatial diversity does not only apply to a degree 
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of node scatter taken with respect to two dimensions, but it also refers to a range of 

separation distances taken along some axis, or a single dimension. In the case of Line_3 

versus TX_2, this axis can be drawn such that it connects all of the node positions and 

terminates at the transmitter's location. 

The largest error variance increase (or decrease in estimate precision) was by the All 

Sensors topology (5.96 feet2). This was expected since the transmitter’s position was moved 

from being surrounded by the topology’s nodes to being located outside of the topology's 

perimeter. The largest decrease in error variance was by Small Triangle_1 (12.57 feet2). Being 

more than 14 feet farther from TX_2 (than to TX_1) and that fact that it occupied a 

relatively small area gave Small Triangle_1 a large decrease in stability performance. In 

general, the hexagon topologies yielded smaller position errors, and the error variances for 

the rectangle topologies were consistently small. Both results agree with our first and third 

observation guidelines. 

After we finished our initial survey, all of the numerical data for Figure 25 and Figure 

26 were compiled into a table so that the topologies could be ranked. Our goal was to 

summarize the data according to how well the topologies helped to locate a transmitter by 

being both accurate (by having a low mean position error) and stable (by having a low error 

variance). We arranged the data into four columns as shown by the solid vertical lines in 

Table D1 in Appendix D. Then, we divided the rankings into thirds. For the top-third and 

bottom-third rankings, we created two histograms which represented the "best of the best" 

and the "worst of the worst" based on how frequently each topology appeared in the four 

columns belonging to the upper and lower rankings, respectively.  We provide these 

histograms in Figure 27. 
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Figure 27:  Histograms of the most helpful and least helpful sensor topologies 

Figure 27:  Histograms of the most helpful and least helpful sensor topologies 

The Hexagon_1B (ID: 16) and Triangle_3 (ID: 3) topologies were ranked as the 

absolute best and absolute worst topologies, respectively. The time-varying position error 

plots in Figure 24 provide a qualitative idea of how different the two topologies performed. 

The hexagon's error was nearly constant for the duration of the trials, and the triangle's error 

was very erratic. Their qualities of performance are compared further when the position 

estimates are viewed as scatter plots. Figure 28 shows relatively benign scatter plots given by 

the Hexagon_1B topology, while Figure 29 depicts scatter plots of Triangle_3's position 

estimates. (The outliers were kept in both figures for emphasis.) The shapes of the position 

estimates in Figure 29 seemed to point towards the top-leftmost sensor (F117_B) instead of 

forming a relatively Gaussian distribution. In an effort to find out why the position estimates 

were scattered in this fashion, we took a look at the received power of the topologies' nodes. 
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Figure 28:  Scatter plot of Hexagon_1B’s position estimates 

The plots of Figure 30 depict the received power for the Triangle_3 (top row) and 

Hexagon_1B (bottom row) topologies according to the distance between their nodes and the 

transmitter. In keeping with communications theory, we expected to see an exponential 

decay of the received power. To make this trend more apparent, we converted the power 

values into the log domain and applied a linear fit to each case. 

Figure 29:  Scatter plot of Triangle_3’s position estimates 
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Figure 28: Scatter plot of Hexagon_1B’s position estimates (59 estimates each) 
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Figure 29: Scatter plot of Triangle_3’s position estimates (59 estimates each) 
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Figure 30:  Received power by distance for Triangle_3 and Hexagon_1B 

The log-domain equivalent plots for Figure 30 are shown in Figure 31 and Figure 32, 

as well as the residual plots from the linear fit tests. The linear fit has a negative slope in all 

cases, and the residuals are nearly symmetric about their respective zero-error lines. These 

indications suggest good exponential decay. However, we were concerned with the 

abnormally large power values at distances 10.3 and 14.2 feet in Figure 30's bottom-left and 

bottom-right plots, respectively. Both values belonged to F16_A. Going even further, we 

examined the node populations for the worst-of-the-worst topologies (from Figure 27) and 

found that of the four worst performing topologies, the most frequently-used node was 

F16_A. 

 
Figure 30:  Received power by distance for Triangle_3 (top) and Hexagon_1B (bottom) 
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Figure 31:  Log-domain representation of the average received power of Triangle_3’s nodes 
with linear fit curves and residual their associated residuals 

Figure 31:  Log-domain representation of received power for Triangle_3’s nodes 

 
Figure 32:  Log-domain representation of the average received power of Hexagon_1B’s 
nodes with linear fit curves and residual their associated residuals 

Figure 32:  Log-domain representation of received power for Hexagon_1B’s nodes 
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Given what we saw here, we concluded that the F16_A node may have been faulty. 

The USRP characterization data (Figure 16) showed near identical responses among the 

USRPs in a lab environment, however unlikely it seemed, there may have been something 

unknown to us that affected the F16 USRP at its Topology_A location. Since the sensor 

inclusion histogram (Figure 22, right) did not show F16 (ID: 2) to be one of the most 

frequently used nodes, we continued our comparisons of the real world data. 

As we stated earlier, using a mean absolute position error is just one way to make 

comparisons. To expand our analysis we took into account topology size so that we could 

normalize the position error values, and thus compare any pair of topologies, regardless of 

their sizes. This kind of comparison is instrumental for doing a cost-benefit analysis. In 

effect it would allow us to find which topology gave the most value using the least resources 

under our experiment conditions. To form the normalized position error and normalized 

variance values we evaluated: 

errornorm = �number of nodes  × mean( errorradial
2 ) 

 

(11) 

and 

 
 

(12) 

 

where the number of nodes have been used to scale the mean squared error and the variance 

of the square error. The results of our calculations are depicted in Figure 33 and Figure 34. 

The topology rankings are listed in Table D2 in Appendix D. 

Applying the same ranking method as described earlier, we sorted the topologies 

according to their normalized mean position errors and their normalized error variances. We 

called this normalized ranking a measure of topology effectiveness, and they are reflected in 

Figure 33 and Figure 34. The least effective topologies were Line_2 and Small Triangle_1. 

Line_2's poor performance was expected since its node positions did not line up alongside 
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the transmitter in either position (as Line_3's nodes were arranged against TX_1). The nodes 

of Small Triangle_1 surrounded TX_1 in an almost ideal fashion – the transmitter was 

located at its center. Therefore, we expected that this supposedly ideal arrangement would 

reflect favorably in the topology's position estimates, especially since the nodes were no 

more than 5 feet away. But this turned out not to be the case. Upon revisiting the 

localization code, we realized that the variance of the distances between each node and the 

transmitter were close to zero. Since this value was taken as a denominator term, it reflected 

as an unstable topology, analytically. When viewed in this regard, Small Triangle_1 

performed as it should have against TX_1. Small Triangle_1 was expected to fare poorly 

since it was very far removed from TX_2. 

 
Figure 33: Normalized position error for all real world topologies against TX_1 

Figure 33:  Normalized position error for all real world topologies against TX_1 
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Figure 34: Normalized position error for all real world topologies against TX_2 

Figure 34:  Normalized position error for all real world topologies against TX_2 

The most effective topology was Hexagon_1B. It was consistently more stable and 

more accurate than the other topologies. In contrast, despite having a relatively low mean 

position error (approximately 4 feet), Hexagon_1's error variance (4.37 feet2), which was 

comparable with Line_2's error variance (4.43 feet2), translated into a large normalized width. 

This goes to show that if a topology with many nodes does not perform significantly better, 

it should be penalized. As the rankings indicate, if given the choice to select either the 

hexagon with the center node or without, the more effective choice would be to include the 

center node because it added significant value. 

4.5 Simulation Results  

Using the same metrics and the same topologies, we created similar position error 

plots for the simulation results. Figure 35 and Figure 36 were used to draw comparisons as 

we had done before, and we made note of any similarities between the trends given by the 
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simulated data with what we saw from the real world data. Part of the value in emulating our 

topologies using the simulation was to be able to see how performance would change given 

an environment where the nodes were identical. An initial look at the un-normalized mean 

position errors revealed that the topologies' results occurred in clusters and that similar 

topologies were performed similarly (with the exception of Line_1). For example, Triangles 

1 through 5 (the 3-node triangles) had similar mean position errors and were separate from 

Triangles 6 through 10 (the 4-node triangles).  The clustering of the errors was a good 

indication that there were distinctions between the different types of topologies. However, 

the nearly monotonic mean error values suggested a trend that disregarded the various 

topology orientations with respect to the transmitter; it did not seem correct that Triangle_1 

(ID: 1) and Triangle_2 (ID: 2) should ever have comparable mean position error values.  

Figure 35:  Mean absolute position error for all simulated topologies against TX_1 

 

 
Figure 35: Mean absolute position error for all simulated topologies against TX_1 
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Figure 36:  Mean absolute position error for all simulated topologies against TX_2 

According to the simulated data, Triangle_5 (ID: 5) and Line_1 (ID: 17) had the 

largest mean position errors against TX_1 and TX_2, respectively. This claim against 

Triangle_5 does not match the real world data, which indicated that Triangle_5 was in the 

third tier for "Most Helpful" topology. On the other hand, the claim regarding Line_1 did 

correspond with the experimental results, which had it ranked as the "Least Helpful" 

topology. A general comparison showed that the position error variance for the simulation 

data was five times greater than the real world position error variance, on average. This 

comparison convinced us that the simulation results were not as close to the real world data 

as we hoped. 

 

 

 

 
Figure 36: Mean absolute position error for all simulated topologies against TX_2 
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V. Conclusions and Recommendations 

5.1 Introduction 

 The purpose of this chapter is to summarize the conclusions of our research. We 

begin with a review of our research objectives. Then, we discuss the significance of what our 

efforts accomplished. Finally, we provide our recommendations for future work. 

5.2 Review of Research Objective 

As introduced in Section 1.3, our first objective was to demonstrate that 

collaborative localization could be implemented in real time. We were successful in 

implementing a real-time process (Appendix B), however we chose to discuss our more 

flexible post-processing approach in Chapters 3 and 4. This approach not only proved to be 

highly reconfigurable, but also an excellent learning tool. Our second objective was to 

examine the position estimate accuracy of our testbed. We gave a comparison of position 

estimation performance for all of our topologies using mean absolute error plots. 

Additionally, we compared topology performance using a normalized metric that took into 

account the topology's size. Overall we showed our hexagon topology was the most effective 

(with mean position errors near 4 feet), and that our triangle and line topologies were the 

least effective (with mean position errors approaching 12 feet). Finally, our third objective 

was to compare simulation results with real-world results. Unfortunately, our comparisons 

showed that these results were not in total agreement. We are led to believe that despite our 

efforts to emulate a larger sensor array, the simulation code we used was better equipped for 

much larger sensor networks (for S = 100 nodes instead of S = 10 nodes). 
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5.3 Significance of Research 

 This research broke new ground by actually demonstrating principles of collaborative 

localization -- a topic more commonly explored using simulation experiments alone. A major 

benefit of our research is that the flexible sensor network implemented here could be 

modified to extend more concepts that, to date, still only exist on paper. Modern military 

communications devices are being extended to support the Network-Centric Warfare 

(NCW) vision, in which network cohesion and information sharing take precedence. As the 

capabilities of information resources are extended to support automated collaboration, all 

users of this technology would benefit from the higher quality of information that it would 

offer. Our sliver of research has shown that it can be done.   

5.4 Recommendations for Future Research 

 The research effort presented in this thesis can be extended in several ways. First, we 

recommend that our experiments are repeated using directional antennas at each transmitter 

location. In this way, more compelling arguments for the benefits of collaborative location 

can be made through a real-world demonstration. Next, we recommend that the sensor 

network undergo evolutionary modification that includes: removing the LAN requirement 

for time syncing, reconfiguring the USRPs’ hardware and software to operate in another (or 

multiple) frequency bands, and having the radios implement a common resource map to 

transfer digital data among each other. The objective would be to construct a scenario in 

which a successful outcome depends on how well the radios can collaborate. Finally, we 

recommend the creation of a shared language (similar in style to semantic web) that would 

be extensible by design, so that a more formal process can be put in place whereby the 

radios could query each other and an observer could query the sensor network. 
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5.5 Summary  

 In this chapter, we presented the conclusions of this research.  Also, we reviewed the 

objectives that we intended to meet. We discussed the significance of our research and 

finally, offered some recommendations for future research. 
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Appendix A. GNU Radio Sample Code 
 

The GNU Radio software includes several development tools and programming 

libraries to interact with the USRP hardware. For example, the Python scripting language 

serves as the primary language used to command the hardware. In general, this is done by 

calling libraries, classes and signal processing blocks; and then linking those pieces together 

in a more human-readable, object-oriented programming (OOP) style. Since this process 

takes some time to get acclimated to, we strongly recommend any GNU Radio and USRP 

hardware newcomer to follow the series of tutorials created by Dawei [53].   

An excerpt of code is provided in Figure A1. This code was taken from a Python 

script (usrp_wfm_rcv.py ) which uses the USRP hardware to capture wideband FM 

radio transmissions, and then plays the received audio through a computer’s speakers. 

1 #!/usr/bin/env python

2

3 from gnuradio import gr, gru, eng_notation, optfir

4 from gnuradio import audio

5 from gnuradio import usrp

6 from gnuradio import blks

7 from gnuradio.eng_option import eng_option

8 from gnuradio.wxgui import slider, powermate

9 from gnuradio.wxgui import stdgui, fftsink

10 from optparse import OptionParser

11 imprt usrp_dbid

12 import sys

13 import math

14 import wx  
Figure A1:  Excerpt code from usrp_wfm_rcv.py showing import statements 
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Line 1 is an optional statement that allows the script to be executable from the command 

line. The text that follows in lines 3 through 14 are import statements. They invoke modules 

and packages that would be used throughout the script and are typically called upon at the 

beginning. Modules are files that contain Python definitions and statements. Packages are 

collections of modules that have similar functions. There also exist sub-packages that group 

even more closely related modules together. For example, Line 9 of Figure A1 states: from 

the wxgui subpackage (of the larger gnuradio package) import the stdgui and 

fftsink modules. Note that it is not required to import all modules in a sub-package. 

Here only two modules were needed from wxgui, and so only two were imported. 

Classes in Python operate much the same way as classes do in other OOP languages. 

Figure A2 shows the wfm_rx_graph class declaration which defines the user interface 

and signal processing routine. 

30

31

32

33

34

35

36 help="select USRP Rx side A or B (default=A)")

37

38 help="set frequency to FREQ", metavar="FREQ")

39

40 help="set gain in dB (default is midpoint)")

41

42 help="pcm device name. E.g., hw:0,0 or surround51 or /dev/dsp")

43

44

parser.add_option("-g", "--gain", type="eng_float", default=None,

parser.add_option("-D", "--audio-device", type="string", default="",

(options, args) = parser.parse_args( )

class wfm_rx_graph (stdgui.gui_flow_graph):

def __init__(self, frame, panel, vbox, argv):

parser = OptionParser(option_class = eng_option)

parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None,

stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)

parser.add_option("-f", "--freq", type="eng_float", default=100.1e6,

 

Figure A2:  Excerpt code from usrp_wfm_rcv.py showing class declaration 
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In Line 30, the class declaration utilizes a package-module relationship to define a new class 

(wfm_rx_graph) that is derived from the gui_flow_graph module (a sub-module of 

the sdgui module imported in Line 9 of Figure A1). 

In the lines following, wfm_rx_graph is given a set of initial conditions (Lines 31 

and 32), defines command-line option assignments (Lines 34 – 42), and calls a parsing 

function to sort the user-input options (Line 44). These options are listed at the command 

line and may specify parameter such as the type of receiver daughterboard to be used and 

the center frequency it will be tuned to. For example, the following statement may be 

entered at the command line: 

1 ./usrp_wfm_rcv.py   -R  B   -f  99.9M  

This command would invoke the usrp_wfm_rcv.py script to use the receiving 

daughterboard located on Side B of the USRP motherboard (likely a Basic RX or TVRX 

daughterboard), and to tune its center frequency to 99.9 MHz. What results is a display 

similar to the one shown in Figure A3. 

 
Figure A3:  Graphical display of usrp_wfm_rcv.py tuned to 99.9 MHz 
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Joining all of the software pieces is performed easily using and intuitive structure. 

Line 89 of Figure A4 sets the audio device (by default the host computer’s sound card) as 

the audio sink. Line 92 joins the radio, filter, signal processing blocks, volume adjustment 

control, and sound card in the order they are passed in the connect function. 

89 audio_sink = audio.sink( int(audio_rate), options.audio_device)
90
91 self.connect( self.u, chan_filt, self.guts, self.volume_control, audio_sink )  

Figure A4:  Excerpt code taken from usrp_wfm_rcv.py showing audio sink declaration and 
software block connect statement 
 

This concludes our introductory look at GNU Radio code. However, several other 

online sources are available to get started. Here they are listed in descending order according 

to our personal preference: [53], [54], [55], [56]. 
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Appendix B. Real-time Collaborative Localization 

In this section we discuss the central software tool used to perform our experiments, 

the RSSI Localization Code. The code is shared between two files. The first file makes use of 

an already-existing GNU Radio script (usrp_spectrum_sense.py) by appending our 

station detection algorithm, RSSI algorithm, and sensor collaboration procedures. The 

second file is a Python port of the omnidirectional node localization function which was 

originally written as M-code by Martin in support of the simulations described in [9]. 

The localization experiments are conducted using a sensor array which observes an 

emitter node. The emitter node transmits audio much like a local radio station by mixing 

audio signal from a song with a carrier tone. As such, each sensor must be able to identify 

any potential stations within its viewable band that need to be localized. This process should 

be performed iteratively and consistently among all members of the sensor array. 

The usrp_spectrum_sense.py script is provided upon installation of the 

GNU Radio development toolkit. Its primary functions are to continuously sweep through 

the entire FM band (88 MHz - 108 MHz) at evenly-spaced center frequencies, collect a 

stream of complex signal data, and calculate the magnitude squared of the signal in the 

frequency domain – a power spectral density (PSD). As Figure 11 depicts, each sweep-

iteration in the time domain ends with an un-normalized PSD calculation for a sampled 

signal 128 µsec in duration. Although the example script provides PSD data for all 

frequencies in the FM band, we only need a sub-band of frequencies to be monitored in 

order to carry out our experiments. Thus, the tuning algorithm was changed to remain fixed 

on a user-defined center frequency. 
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Determining the presence of a radio station requires a systematic approach of 

distinguishing potential channels of interest versus noise. We devised an algorithm that 

calculates the average PSD given an averaging interval and then uses a sliding window to 

single out clusters of frequencies with relatively high energy – potential radio stations. The 

time averaging process depicted in Figure 12 shows several PSDs occurring at regular time 

intervals being reduced to a single PSD whose shape is smoother and less noisy. Given a 

five-second time interval, approximately 430 PSDs will be used to form an average. Once a 

time-averaged PSD is produced, stations are more readily identified because a significant 

portion of the noise is averaged out. 

The sliding-window process relies on two concepts: (1) a fixed number of 

contiguous data points (the window), and (2) movement of the window’s boundaries along 

an axis (the sliding motion). A window placed anywhere along the frequency axis of the 

time-averaged PSD will enclose a cluster of received power values. If this window is aligned 

with a station, the sum of the received power values is declared the RSSI of that station and 

the center x-value of the window is declared the station’s center frequency.  But, to ensure 

that our algorithm only acknowledges valid stations, each realization of the sliding window 

must go through a vetting process, and the window must be made appropriately wide. 

Every time-averaged PSD has an associated average power that is calculated across 

its entire viewable bandwidth (a global average power). For each sliding window position, 

the average power bounded by the window (a local average power) is compared to the global 

average power. If the local average power is equal to or greater than the global average 

power, we are confident that a station resides partially or completely within the window. Any 

window position for which the local average power is less than the global average power is 

ignored. Figure B1 identifies typical window alignment conditions. 
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Figure B1:  Typical un-normalized PSD showing the global average power across the 
viewable band 

Figure B2 shows the transition from a time-averaged PSD to a pseudo-RSSI plot 

once the sliding window has traversed the entire frequency axis. By using this average power 

comparison technique, we see that weaker signals and noise are excluded.  

 
Figure B2:  Time-averaged PSD (left) transition to a pseudo-RSSI plot (right) 

A brief comparison of station detection results for several window widths is offered 

in Figure B3. The differences in window size affect the number of stations that are detected 

successfully. Once possible stations are identified, the center x-values are retrieved. Finally, 
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summations are performed using the values adjacent to each center frequency (the only 

remaining non-zero values). 

 
Figure B3:  Sliding window width comparison with pseudo-RSSI plot overlay 
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Appendix C. Sensor Topologies 
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Figure C1:  Topology legend showing sensor identities 
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Figure C2:  Sensor topologies with sensor locations shown as triangles and transmitter 
locations as squares 
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Appendix D. Topology Rankings 
 

Table D1:  Topology rankings using real world data 

RANK Topology Mean Error Topology Mean Error Topology Variance Topology Variance
1 15 3.7851 16 3.4969 8 0 13 0.1361
2 16 3.8742 19 3.9639 7 0.106 16 0.1714
3 21 4.4043 15 4.1711 15 0.1734 9 0.176
4 8 4.4721 5 4.5138 16 0.1827 14 0.2176
5 14 4.4874 7 4.5874 13 0.209 10 0.4269
6 13 4.7751 1 5.2602 21 0.2275 20 0.4773
7 5 5.883 10 5.4406 19 0.2965 19 0.536
8 2 6.0491 2 5.5109 14 0.3846 6 0.5836
9 17 6.4806 21 5.6101 6 0.4617 12 0.6694

10 1 6.9204 12 6.0102 10 0.7911 4 0.7743
11 12 7.8911 3 7.1398 20 0.8504 5 0.815
12 4 8.1566 14 7.2281 1 0.8974 8 0.8849
13 6 8.3275 13 7.3737 18 1.2699 11 1.0455
14 9 9.1528 6 7.5511 4 1.2851 15 1.0669
15 20 10.2453 4 8.4658 9 1.3206 18 1.0752
16 10 10.2566 9 9.582 2 1.3784 7 1.1767
17 7 10.8327 17 9.9171 12 1.5 21 1.2662
18 18 10.8892 20 14.1901 5 1.5044 1 1.3626
19 11 11.6025 11 15.2708 11 2.0898 2 1.393
20 19 11.9167 18 16.0315 17 2.1901 17 1.3999
21 3 11.9714 8 17.3203 3 3.0173 3 2.4006

ACCURACY
(mean position error)

STABILITY
(position error variance)

Against TX1 Against TX2 Against TX1 Against TX2

 
 
 

Table D2:  Topology ranking using normalized real world data 

RANK Topology Mean Error Topology Mean Error Topology Variance Topology Variance
1 8 8.9443 19 8.1967 8 0 13 7.8173
2 15 9.3083 5 8.2852 13 7.4665 16 8.1412
3 13 9.5846 16 9.2937 15 8.4581 9 13.5931
4 14 10.1722 1 10.1997 7 9.2233 14 14.9856
5 16 10.2932 7 10.2511 16 10.2008 10 19.503
6 5 11.3779 2 10.6341 14 15.66 19 21.1357
7 2 11.4581 12 10.6509 21 20.9803 5 24.399
8 1 12.3611 10 11.0069 19 28.1883 12 27.041
9 17 13.4278 15 11.4092 6 28.5459 6 35.9264

10 21 13.9976 13 14.7568 1 36.2594 4 39.8855
11 12 14.5701 3 14.7711 2 50.3413 1 52.3639
12 4 14.7746 4 14.8928 10 55.9041 7 52.7111
13 6 16.7514 6 15.2716 5 56.4046 20 54.2762
14 9 19.0111 14 16.1901 4 64.5759 2 55.5537
15 10 20.7422 17 17.8112 12 72.7113 15 92.6852
16 20 20.7552 9 19.1763 20 73.1738 11 93.1902
17 11 21.291 21 19.3715 9 84.2739 17 95.3259
18 7 21.6693 11 26.6827 18 102.4515 8 106.4256
19 18 22.3303 20 28.4408 17 104.3838 18 139.5096
20 3 23.0875 18 32.3341 11 140.3247 3 143.3983
21 19 23.8612 8 34.8109 3 195.9913 21 152.5331

ACCURACY
(mean position error)

STABILITY
(position error variance)

Against TX1 Against TX2 Against TX1 Against TX2
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Table D3:  Topology ranking using simulated data 

RANK Topology Mean Error Topology Mean Error Topology Variance Topology Variance
1 21 5.1896 20 4.9924 9 1.2202 20 1.1182
2 10 5.2941 10 5.8392 18 1.2786 10 1.2632
3 15 5.4234 14 6.1013 8 1.3335 15 1.518
4 8 5.589 8 6.2603 21 1.4635 18 1.5373
5 18 5.6732 18 6.269 14 1.4775 6 1.5691
6 6 5.7202 21 6.4252 15 1.5639 19 1.5974
7 7 5.8916 6 6.4489 7 1.5688 7 1.5987
8 20 6.0417 16 6.4644 10 1.6004 21 1.6608
9 9 6.068 15 6.5404 19 1.6176 14 1.7014

10 13 6.1814 13 6.6697 13 1.7184 9 1.7061
11 16 6.2797 19 6.7218 6 1.7352 8 1.7535
12 14 6.3338 9 6.8331 16 1.7581 16 1.8012
13 19 6.8189 7 6.9852 20 1.7961 13 1.8982
14 2 11.8661 3 14.85 3 2.4599 4 3.8823
15 1 12.4499 4 15.1855 17 2.703 17 3.9818
16 17 12.7192 2 15.6584 11 2.7506 11 4.1858
17 4 12.7209 1 16.7918 4 2.7836 5 4.2118
18 11 12.8941 12 17.0073 2 2.8021 2 4.2361
19 3 13.1468 5 17.3369 1 2.8185 1 4.2694
20 12 13.2218 11 18.0146 5 2.8756 12 4.3373
21 5 13.2304 17 18.9017 12 2.9139 3 4.8076

ACCURACY
(mean position error)

STABILITY
(position error variance)

Against TX1 Against TX2 Against TX1 Against TX2

 
 
 

Table D4:  Topology ranking using normalized simulated data 

RANK Topology Mean Error Topology Mean Error Topology Variance Topology Variance
1 10 12.2792 20 10.8893 8 61.4206 20 52.1065
2 8 12.3206 10 12.6679 18 62.2494 10 65.472
3 18 12.3864 18 13.8882 9 67.2809 18 98.2556
4 9 13.0293 8 14.2543 7 78.6881 6 99.0538
5 7 13.2665 6 14.2662 10 80.0974 7 103.9888
6 6 13.2793 19 14.8072 19 90.1743 19 107.1703
7 20 13.9539 9 15.1892 20 95.6038 8 120.2211
8 13 14.0508 13 15.2427 6 96.4126 9 126.0681
9 19 15.0164 7 15.2893 14 103.338 13 136.1069

10 15 15.2271 14 15.5165 13 108.7081 14 138.1652
11 14 15.5493 15 17.5741 15 114.0277 15 159.9327
12 21 18.7128 16 19.4483 21 166.4936 16 202.1052
13 16 18.9133 21 22.7365 16 178.6767 21 298.7552
14 2 22.6124 4 29.3679 3 200.4101 4 345.6858
15 1 23.5574 3 30.3857 2 203.9151 2 386.3385
16 17 23.8342 2 30.639 1 207.6708 1 394.2617
17 4 23.9417 1 32.439 4 208.9645 5 396.9483
18 11 24.1752 12 32.875 11 213.9479 11 400.3386
19 3 24.2288 5 33.2051 17 216.7458 12 400.6844
20 5 24.8749 11 34.2342 12 220.2961 17 410.5908
21 12 24.9117 17 35.3745 5 224.2536 3 444.0298

ACCURACY
(mean position error)

STABILITY
(position error variance)

Against TX1 Against TX2 Against TX1 Against TX2
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